行业动态
工业相机标定深度解析(二)
浏览:6142 次
时间:2015-03-11 14:24:05

        工业相机标定可以分为传统的工业相机标定方法和工业相机自标定方法两大类。不依赖于标定参照物,仅利用摄像机在运动过程中周围环境图像与图像之间的对应关系来对摄像机进行的标定的方法称为摄像机自标定方法。目前已有的自标定技术大致可以分为基于主动视觉的摄像机自标定技术、直接求解Kruppa方程的摄像机自标定方法、分层逐步标定法、基于二次曲面的自标定方法等几种。本章我们主要讲解下工业相机的自标定方法。

        1、基于主动视觉的自标定法

        所谓主动视觉系统,是指摄像机被固定在一个可以精确控制的平台上,且平台的参数可以从计算机精确读出,只需控制摄像机作特殊的运动来获得多幅图像,然后利用图像和已知的摄像机运动参数来确定摄像机的内外参数。其代表性的方法是马颂德提出的基于两组三正交运动的线性方法,后来杨长江,李华等人提出了改进的方案,即分别是基于4组平面正交以及5组平面正交运动并利用图像中的极点信息来线性标定摄像机参数。此种自标定方法算法简单,可以获得线性解,不足之处在于必须有可以精确控制的摄像机运动平台。

        2、基于Kruppa方程的自标定方法

        Faugeras,Luong,Maybank等提出的自标定方法是直接基于求解Kruppa方程的一种方法,该方法利用绝对二次曲线像和极线变换的概念推导出Kruppa方程。基于Kxuppa方程的自标定方法不需要对图像序列做射影重建,而是对两图像之间建立方程,这个方法在某些很难将所有图像统一到一致的射影框架场合会比分层逐步标定法更具优势,但代价是无法保证无穷远平面在所有图像对确定的射影空间里的一致性,当图像序列较长时,基于Kruppa方程的自标定方法可能不稳定。且其鲁棒性依赖于给定的初值。

        3、分层逐步标定法

        近年来,分层逐步标定法已成为自标定研究中的热点,并在实际应用中逐渐取代了直接求解Kruppa方程的方法。分层逐步标定法首先要求对图像序列做射影重建,再通过绝对二次曲线(面)施加约束,最后定出仿射参数(即无穷远平面方程)和摄像机内参数。分层逐步标定法的特点是在射影标定的基础上,以某一幅图像为基准做射影对齐,从而将未知数数量缩减,再通过非线性优化算法同时解出所有未知数。不足之处在于非线性优化算法的初值只能通过预估得到,而不能保证其收敛性。由于射影重建时,都是以某参考图像为基准,所以,参考图像的选取不同,标定的结果也不同相。

        4、基于二次曲面的自标定方法

        Triggs是最早将绝对二次曲面的概念引入自标定的研究中来的,这种自标定方法与基于Kruppa方程的方法在本质上是相同的,它们都利用绝对二次曲线在欧氏变换下的不变性。但在输入多幅图像并能得到一致射影重建的情况下,基于二次曲面的自标定方法会更好一些,其根源在于二次曲面包含了无穷远平面和绝对二次曲线的所有信息,且基于二次曲面的自标定方法又是在对所有图像做射影重建的基础上计算二次曲面的,因此,该方法保证了无穷远平面对所有图像的一致性。

京ICP备12022927号-1
北京市海淀区上地信息路1号国际科技创业园1—1705
© Copyright 2011 北京盈美智科技 All rights reserved.