行业动态
机器视觉对视频监控产生了哪些影响?(二)
浏览:1044 次
时间:2016-09-28 15:36:51

        上一章我们讲述了目标识别、目标追踪为视频监控带来的影响,本章我们来了解视觉分析技术对视频监控的影响。

        视觉分析技术,就是通过目标识别、目标追踪方式之后,进一步获取目标的出现时间、运动轨迹、颜色等诸多信息,通过对各个目标的上述信息的分析,找到视频中存在的危险、违规行为或者可疑目标,并对这些行为和目标进行实时报警、提前预警、存储以及事后检索。

        在视觉分析的应用领域中,最为重要的便是智能视频监控和智能视频检索技术。两者的应用技术相近,主要区别在于:智能视频监控是对当时采集的视频进行实时处理,当发现危险事件或者可疑分子时进行实时报警;而智能视频检索技术,处理的是已经发生过的存储视频,其通过对视频进行快速分析,找到其中存在的危险事件、可疑分子,以及每个感兴趣目标的信息,然后,使用者可以对关心的事件进行选择或者对关心的目标属性进行定义,系统能够快速查找到用户关心的事件或目标。

        一般而言,智能视频监控包含的功能包括周界检测、越线检测、徘徊逗留检测、遗失检测、遗留检测、快速移动检测、打架检测、尾随检测、人群聚集、火灾烟雾检测、PTZ目标跟踪、视频故障分析、视频存储和回放等功能。

        对于不同的用户而言,对上述功能的需求会有所偏重。在上述技术中,其中,周界检测、越线检测、徘徊逗留检测、遗失检测、遗留检测、快速移动检测、打架检测、尾随检测采用的方法,主要都是先采用背景建模(Background Model)、前景提取(Foreground Extraction)提取得到运动目标,然后,采用目标匹配跟踪技术得到目标的轨迹,并得到目标的运动方向、所处位置,以及各目标间相互关系,最后依据设定规则得到上述异常行为。

        其中,对于复杂背景,大流量区域的遗留物和遗失物检测方法,可以采用特殊的基于时间序列区域运动分析的方法进行,而不必进行上述目标检测跟踪技术得到。

        而智能视频检索,首先需要利用智能视频监控的检测技术来检测异常事件,进一步,智能视频检索还需要在运动目标检测跟踪的基础上,得到人车等目标的诸如人脸、颜色、速度以及数量等信息。这样,进行智能视频检索的时候,一方面可以检索异常事件,此外还可以通过目标的出现结束时间、颜色、速度、数量,以及人脸信息等进行检索。

        此外,系统还可以给出一个事件和目标的时空分布图,便于用户查找自己感兴趣的时段和事件。对于现在动则成千上万的监控终端而言,想从这些海量数据中查找到自己关心的事件和目标,必须借助智能视频检索技术。

京ICP备12022927号-1
北京市海淀区上地信息路1号国际科技创业园1—1705
© Copyright 2011 北京盈美智科技 All rights reserved.