

ZX10-LD & ZX10-ND Small size, high performance

The ZX-laser series offers diverse, application specific customization possibilities. The user can choose from violette to infrared wavelengths depending on the application and material to be inspected. The ZX-laser reaches an unrivalled accuracy with its boresight error of less than 0.8 mrad. The industrial-suited design along with stable performance works perfectly as an integrated module in machine vision applications, sensors or processing machines. The laser module contains no driver electronics (ZX10-ND) and is therefore ideally suited for OEM applications. Upon request, licensing and integration of the Z-LASER electronics can be provided (ZX10-LD).

Highlights

- Repeatable high product quality due to automated production processes
- Highest reproducibility of beam quality
- Optical output power up to 200 mW
- Wavelengths from 405 nm 830 nm
- Fixed focus

- IP 50 (optional IP 67)
- ZX-LD = "License driver"
- ZX-ND = "No driver" (optic / diode package)

Positioning Tasks

3D-Measurement

System specifications

Wavelength	nm
Wavelength tolerance	nm (typical)
Wavelength drift	nm / K (typical)
Output power (elp)	mW
Output power (flp)	mW
Spatial mode	(typical)
RMS noise	(20 Hz to 20 MHz, typical)
Peak-to-Peak Noise	(20 Hz to 20 MHz, typical)
Boresight error ⁽¹⁾	mrad (typical)
Line orientation ⁽²⁾	mrad
Pointing stability	μrad / K
Long-term power stability	(24 h)
Start-up time	μs
Laser operation mode	

405 nm	450 nm	520 nm	635-685 nm	785 nm	830 nm
±10 nm	±10 nm	-5 nm +10 nm	±10 nm	±10 nm	±4 nm
0,06 nm	0,02 nm	0,06 nm	0,25 nm	0,25 nm	0,25 nm
≤ 160 mW	≤ 60 mW	≤ 40 mW	≤ 100 mW	≤ 80 mW	≤ 200 mW
≤ 120 mW	≤ 45 mW	≤ 30 mW	≤ 90 mW	≤ 60 mW	≤ 150 mW

Single Transverse Mode

< 0,5 %

< 1 %

< 0.8 mrad

< 10 mrad

< 10 µrad / K

±3 % over operating temperature range

< 70 µs

APC

Electrical specification(3)

Operating voltage	VDC
Operating current	(max. at 25 °C)
Protection	
Electrical isolation	
Connection	
Power consumption	

-	
-	
-	
-	

Optical specification

Fan angles ⁽⁴⁾	Degrees
Line straightness ⁽⁵⁾	% (of line length)
Line uniformity ⁽⁶⁾	% (typical)
Dot	
DOE	
Focus range	mm

5°, 10°, 20°, 30°, 45°, 60°, 75°, 90° (homogeneous line) 90° (Gaussian line profile)				
< 0.05 %				
< 25 %				
Point elliptical				
Multi line, crosses, grids, etc.				
< 100 mm up to 10,000 mm (only available as fixed focus)				

Keynotes

¹ Boresight error Also known as pitch and skew		
² Line orientation Also known as line tilt (roll), with reference to the indentation in the clamping area		
³ Depending on laser diode		
⁴ Line length / fan angle	at > 13,5 % I _{max}	
⁵ Line straightness	Deviation from best fit line over the middle 80% of the line, for homogeneous lines	
⁶ Line uniformity	Maximum relative optical power variation over the middle 80% of the line, for homogeneous lines and fixed focus	

Line thickness vs. working distance*

DOF vs. working distance*

Wavelength		Calculation factor for line width		Calculation factor for depth of focus	
		flp**	elp**	flp**	elp**
Blue	405 nm	0.66	0.82	0.75	1.02
Blue	450 nm	1.03	1.83	1.49	4.29
Green	520 nm	0.97	1.20	0.99	2.61
Red	640 nm	1.05	1.00	1.04	0.95
Red	660 nm	1.00	1.00	1.00	1.00
IR	830 nm	1.42	2.11	1.71	2.20

Optical configurations for several line settings are available.

- flp** = fine line Powell; thin lines for all working distances with smaller depth of focus (recommended for fan angles between 5° 60° at working
- distances < 500 mm and for fan angle of 90° at working distances > 500 mm). This optical configuration cannot supply the maximum output mentioned on page 2. Only approx. 75% can be achieved.
- elp** = extended line Powell; lines with advanced depth of focus and thicker lines. Recommended for fan angles > 75° at working distances < 500 mm.

The graphs above show the values for line width and depth of focus of a 660 nm laser. To get the values for a different wavelength the factor from the table above has to be multiplied by the values from the graphs.

Example: 660 nm laser focused at 500 mm working distance: line width approx. 150 µm (@ elp** optic); Depth of focus approx. 175 mm (values from the graphs)

Calculated: 405 nm laser focused at 500 mm working distance: line width approx. $150 \mu m \times 0.82 = 123 \mu m$; Depth of focus approx. $175 \text{ mm} \times 1.02 = 179 \text{ mm}$

- * Values in the graphs for homogenous line profiles
- ** Fan angle: 5° 90°

Environmental conditions

Operating temperature	°C / °F	Depending on laser diode
Storage temperature	°C / °F	Depending on laser diode
Humidity	%	< 90 %, non-condensing
Dissipated heat	W	Depending on laser diode
Shock and vibration		According to IEC EN 61373:2011, cat. 2

Mechanical specifications

g / lbs	10 g / 0.02 lbs	
mm / inch	22.5 mm / 0.89 in	
mm / inch	10h7 mm / 0.39 in	
	LD pins	
	Stainless steel	
	IP 50	
	mm / inch	mm / inch 22.5 mm / 0.89 in mm / inch 10h7 mm / 0.39 in LD pins Stainless steel

